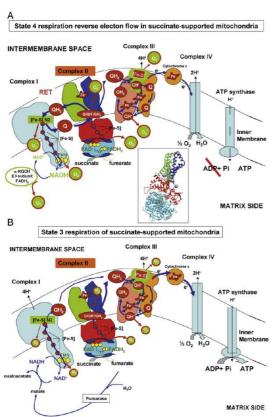
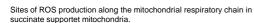


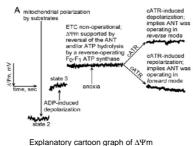
Doctoral College Metabolic & Cardiovascular Disease

MITOCHONDRIAL SUBSTRATE-LEVEL PHOSPHORYLATION AS A MEANS OF ENERGYHARNESSING IN NORMAL AND TUMOR CELLS DURING HYPOXIA

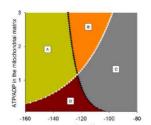
GUEST LECTURE by




Prof. Christos Chinopoulos, MD PhD

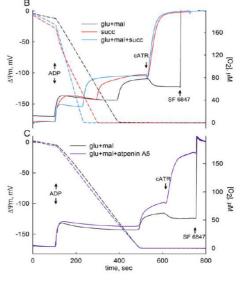

Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary

> Monday, 22.11.2018 17:00


Seminar room MC1.F.05.016, Department of Pathology (MED Campus, Neue Stiftingtalstrasse 6, 5th floor), MUG

Explanatory cartoon graph of ΔΨm measurements of mitochondria regarding the "biosensor test" addressing the directionality of the ANT, and as an extension of this, the directionality of SUCL.

Erey_ATPase (black triangles): Erey_ANT (white triangles)


[A]ForF ATP synthase "forward", ANT: "forward", SLP: may or may not operat

[a] ForF ATP synthase: "reverse", ANT: "forward", SLP: operational

[C]ForF ATP synthase: "reverse", ANT: "toward", SLP: may or may not operat

D F₀-F₁ ATP synthase: 'forward', ANT: 'reverse'; SLP: may or may not oper

Computational estimations of Erev_ANT and Erev_ATPase as a function of [ATP]/[ADP] in the mitochondrial matrix.

from: Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis.

Tretter et al. (2016) Biochem Biophys Acta.

1857:1086-101